
The Wayback Machine - https://web.archive.org/web/20170720051654/http://www.javaworld.com:80/article/2077352/java-se/s…

NEWS

Smartly load your properties

Strive for disk location-independent code nirvana

By Vladimir Roubtsov
JavaWorld |

AUG 8, 2003 2:00 AM PT

August 8, 2003

Q: What is the best strategy for loading property and configuration files in Java?

A: In general, a configuration file can have an arbitrarily complex structure (e.g., an XML schema definition file).

But for simplicity, I assume below that we're dealing with a flat list of name-value pairs (the familiar

.properties format). There's no reason, however, why you can't apply the ideas shown below in other situations,

as long as the resource in question is constructed from an InputStream.

Evil java.io.File

Using good old files (via FileInputStream, FileReader, and RandomAccessFile) is simple enough and

certainly the obvious route to consider for anyone without a Java background. But it is the worst option in terms

of ease of Java application deployment. Using absolute filenames in your code is not the way to write portable

and disk position-independent code. Using relative filenames seems like a better alternative, but remember that

they are resolved relative to the JVM's current directory. This directory setting depends on the details of the JVM's

launch process, which can be obfuscated by startup shell scripts, etc. Determining the setting places an unfair

amount of configuration burden on the eventual user (and in some cases, an unjustified amount of trust in the

user's abilities). And in other contexts (such an Enterprise JavaBeans (EJB)/Web application server), neither you nor

the user has much control over the JVM's current directory in the first place.

An ideal Java module is something you add to the classpath, and it's ready to go. Think EJB jars, Web applications

packaged in .war files, and other similarly convenient deployment strategies. java.io.File is the least

platform-independent area of Java. Unless you absolutely must use them, just say no to files.

0:07 hrs

 Sign In | Register

🔎

https://web.archive.org/web/20170720051654/http://javaworld.com/news
https://web.archive.org/web/20170720051654/http://www.javaworld.com/#resources
https://web.archive.org/web/20170720051654/http://javaworld.com/
https://web.archive.org/web/20170720051654/http://javaworld.com/
https://web.archive.org/web/20170720051654/http://javaworld.com/learn-about-insider/
https://web.archive.org/web/20170720051654/http://javaworld.com/learn-about-insider/
javascript://
javascript://

Classpath resources

Having dispensed with the above diatribe, let's talk about a better option: loading resources through classloaders.

This is much better because classloaders essentially act as a layer of abstraction between a resource name and its

actual location on disk (or elsewhere).

Let's say you need to load a classpath resource that corresponds to a some/pkg/resource.properties file. I use

classpath resource to mean something that's packaged in one of the application jars or added to the classpath

before the application launches. You can add to the classpath via the -classpath JVM option each time the

application starts or by placing the file in the \classes directory once and for all. The key point is that deploying

a classpath resource is similar to deploying a compiled Java class, and therein lies the convenience.

You can get at some/pkg/resource.properties programmatically from your Java code in several ways. First, try:

 ClassLoader.getResourceAsStream ("some/pkg/resource.properties");
 Class.getResourceAsStream ("/some/pkg/resource.properties");
 ResourceBundle.getBundle ("some.pkg.resource");

Additionally, if the code is in a class within a some.pkg Java package, then the following works as well:

 Class.getResourceAsStream ("resource.properties");

Note the subtle differences in parameter formatting for these methods. All getResourceAsStream() methods

use slashes to separate package name segments, and the resource name includes the file extension. Compare that

with resource bundles where the resource name looks more like a Java identifier, with dots separating package

name segments (the .properties extension is implied here). Of course, that is because a resource bundle does

not have to be backed by a .properties file: it can be a class, for a example.

To slightly complicate the picture, java.lang.Class's getResourceAsStream() instance method can perform

package-relative resource searches (which can be handy as well, see "Got Resources?"). To distinguish between

relative and absolute resource names, Class.getResourceAsStream() uses leading slashes for absolute names.

In general, there's no need to use this method if you are not planning to use package-relative resource naming in

code.

It is easy to get mixed up in these small behavioral differences for ClassLoader.getResourceAsStream(),

Class.getResourceAsStream(), and ResourceBundle.getBundle(). The following table summarizes the

salient points to help you remember:

Behavioral differences

0:07 hrs

https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaworld/javaqa/2002-11/02-qa-1122-resources.html

Method Parameter format Lookup failure behavior

ClassLoader.

getResourceAsStream()

"/"-separated
names; no
leading "/" (all
names are
absolute)

Silent (returns null)

Class.

getResourceAsStream()

"/"-separated
names; leading
"/" indicates
absolute names;
all other names
are relative to
the class's
package

Silent (returns null)

ResourceBundle.

getBundle()

"."-separated
names; all names
are absolute;
.properties
suffix is implied

Throws unchecked

java.util.MissingResourceExceptio

From data streams to java.util.Properties

You might have noticed that some previously mentioned methods are half measures only: they return

InputStreams and nothing resembling a list of name-value pairs. Fortunately, loading data into such a list (which

can be an instance of java.util.Properties) is easy enough. Because you will find yourself doing this over and

over again, it makes sense to create a couple of helper methods for this purpose.

The small behavioral difference among Java's built-in methods for classpath resource loading can also be a

nuisance, especially if some resource names were hardcoded but you now want to switch to another load method.

It makes sense to abstract away little things like whether slashes or dots are used as name separators, etc.

Without further ado, here's my PropertyLoader API that you might find useful (available with this article's

download):

public abstract class PropertyLoader
{
 /**
 * Looks up a resource named 'name' in the classpath. The resource must map
 * to a file with .properties extention. The name is assumed to be absolute
 * and can use either "/" or "." for package segment separation with an
 * optional leading "/" and optional ".properties" suffix. Thus, the
 * following names refer to the same resource:
 *

0:07 hrs

https://web.archive.org/web/20170720051654/http://www.javaworld.com/#resources

 * some.pkg.Resource
 * some.pkg.Resource.properties
 * some/pkg/Resource
 * some/pkg/Resource.properties
 * /some/pkg/Resource
 * /some/pkg/Resource.properties
 *

* * @param name classpath resource name [may not be null] * @param loader classloader through which to

The Javadoc comment for the loadProperties() method shows that the method's input requirements are quite

relaxed: it accepts a resource name formatted according to any of the native method's schemes (except for

package-relative names possible with Class.getResourceAsStream()) and normalizes it internally to do the

right thing.

The shorter loadProperties() convenience method decides which classloader to use for loading the resource.

The solution shown is reasonable but not perfect; you might consider using techniques described in "Find a Way

Out of the ClassLoader Maze" instead.

Note that two conditional compilation constants control loadProperties() behavior, and you can tune them to

suit your tastes:

THROW_ON_LOAD_FAILURE selects whether loadProperties() throws an exception or merely returns null
when it can't find the resource

LOAD_AS_RESOURCE_BUNDLE selects whether the resource is searched as a resource bundle or as a generic

classpath resource

Setting LOAD_AS_RESOURCE_BUNDLE to true isn't advantageous unless you want to benefit from localization

support built into java.util.ResourceBundle. Also, Java internally caches resource bundles, so you can avoid

repeated disk file reads for the same resource name.

More things to come

I intentionally omitted an interesting classpath resource loading method, ClassLoader.getResources().

Despite its infrequent use, ClassLoader.getResources() allows for some very intriguing options in designing

highly customizable and easily configurable applications.

I didn't discuss ClassLoader.getResources() in this article because it's worthy of a dedicated article. As it

happens, this method goes hand in hand with the remaining way to acquire resources: java.net.URLs. You can

use these as even more general-purpose resource descriptors than classpath resource name strings. Look for more

details in the next Java Q&A installment.

Vladimir Roubtsov has programmed in a variety of languages for more than 13 years, including Java since 1995. Currently, he
develops enterprise software as a senior engineer for Trilogy in Austin, Texas.

0:07 hrs

https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html
https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html

Copyright © 2017 IDG Communications, Inc.

Follow everything from JavaWorld

Learn more about this topic

Download the complete library that accompanies this article
http://images.techhive.com/downloads/idge/imported/article/jvw/2003/08/01-qa-0808-property.zip
(https://web.archive.org/web/20170720051654/http://images.techhive.com/downloads/idge/imported/article/jvw/2003/08/01-qa-
0808-property.zip)

The .properties format
http://java.sun.com/j2se/1.4.1/docs/api/java/util/Properties.html#load(java.io.InputStream)
(https://web.archive.org/web/20170720051654/http://java.sun.com/j2se/1.4.1/docs/api/java/util/Properties.html#load(java.io.InputStream))

"Got Resources?" Vladimir Roubtsov (JavaWorld, November 2002)
http://www.javaworld.com/javaworld/javaqa/2002-11/02-qa-1122-resources.html
(https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaworld/javaqa/2002-11/02-qa-1122-resources.html)

"Find a Way Out of the ClassLoader Maze," Vladimir Roubtsov (JavaWorld, June 2003)
http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html
(https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html)

Want more? See the Java Q&A index page for the full Q&A catalog
http://www.javaworld.com/columns/jw-qna-index.shtml
(https://web.archive.org/web/20170720051654/http://www.javaworld.com/columns/jw-qna-index.shtml)

For more than 100 insightful Java tips, visit JavaWorld's Java Tips index page
http://www.javaworld.com/columns/jw-tips-index.shtml
(https://web.archive.org/web/20170720051654/http://www.javaworld.com/columns/jw-tips-index.shtml)

Visit the Core Java section of JavaWorld's Topical Index
http://www.javaworld.com/channel_content/jw-core-index.shtml
(https://web.archive.org/web/20170720051654/http://www.javaworld.com/channel_content/jw-core-index.shtml)

Browse the Java Virtual Machine section of JavaWorld's Topical Index
http://www.javaworld.com/channel_content/jw-jvm-index.shtml
(https://web.archive.org/web/20170720051654/http://www.javaworld.com/channel_content/jw-jvm-index.shtml)

Visit the Java Beginner discussion
http://www.javaworld.com/javaforums/postlist.php?Cat=&Board=javabeginner
(https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaforums/postlist.php?Cat=&Board=javabeginner)

Sign up for JavaWorld's free weekly email newsletters
http://www.javaworld.com/subscribe (https://web.archive.org/web/20170720051654/http://www.javaworld.com/subscribe)

0:07 hrs

https://web.archive.org/web/20170720051654/http://javaworld.com/about/copyright.html
https://web.archive.org/web/20170720051654/https://twitter.com/javaworldcom
https://web.archive.org/web/20170720051654/https://www.facebook.com/pages/JavaWorld/107993545895326
https://web.archive.org/web/20170720051654/http://www.linkedin.com/company/javaworld-com
https://web.archive.org/web/20170720051654/https://plus.google.com/117974570132126965756/posts
https://web.archive.org/web/20170720051654/http://javaworld.com/about/rss.html
https://web.archive.org/web/20170720051654/http://images.techhive.com/downloads/idge/imported/article/jvw/2003/08/01-qa-0808-property.zip
https://web.archive.org/web/20170720051654/http://images.techhive.com/downloads/idge/imported/article/jvw/2003/08/01-qa-0808-property.zip
https://web.archive.org/web/20170720051654/http://images.techhive.com/downloads/idge/imported/article/jvw/2003/08/01-qa-0808-property.zip
https://web.archive.org/web/20170720051654/http://java.sun.com/j2se/1.4.1/docs/api/java/util/Properties.html#load(java.io.InputStream)
https://web.archive.org/web/20170720051654/http://java.sun.com/j2se/1.4.1/docs/api/java/util/Properties.html#load(java.io.InputStream)
https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaworld/javaqa/2002-11/02-qa-1122-resources.html
https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaworld/javaqa/2002-11/02-qa-1122-resources.html
https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html
https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html
https://web.archive.org/web/20170720051654/http://www.javaworld.com/columns/jw-qna-index.shtml
https://web.archive.org/web/20170720051654/http://www.javaworld.com/columns/jw-qna-index.shtml
https://web.archive.org/web/20170720051654/http://www.javaworld.com/columns/jw-tips-index.shtml
https://web.archive.org/web/20170720051654/http://www.javaworld.com/columns/jw-tips-index.shtml
https://web.archive.org/web/20170720051654/http://www.javaworld.com/channel_content/jw-core-index.shtml
https://web.archive.org/web/20170720051654/http://www.javaworld.com/channel_content/jw-core-index.shtml
https://web.archive.org/web/20170720051654/http://www.javaworld.com/channel_content/jw-jvm-index.shtml
https://web.archive.org/web/20170720051654/http://www.javaworld.com/channel_content/jw-jvm-index.shtml
https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaforums/postlist.php?Cat=&Board=javabeginner
https://web.archive.org/web/20170720051654/http://www.javaworld.com/javaforums/postlist.php?Cat=&Board=javabeginner
https://web.archive.org/web/20170720051654/http://www.javaworld.com/subscribe
https://web.archive.org/web/20170720051654/http://www.javaworld.com/subscribe

